Composition and Regulation of the Cellular Repertoire of SCF Ubiquitin Ligases.

نویسندگان

  • Justin M Reitsma
  • Xing Liu
  • Kurt M Reichermeier
  • Annie Moradian
  • Michael J Sweredoski
  • Sonja Hess
  • Raymond J Deshaies
چکیده

SCF (Skp1-Cullin-F-box) ubiquitin ligases comprise several dozen modular enzymes that have diverse roles in biological regulation. SCF enzymes share a common catalytic core containing Cul1⋅Rbx1, which is directed toward different substrates by a variable substrate receptor (SR) module comprising 1 of 69 F-box proteins bound to Skp1. Despite the broad cellular impact of SCF enzymes, important questions remain about the architecture and regulation of the SCF repertoire, including whether SRs compete for Cul1 and, if so, how this competition is managed. Here, we devise methods that preserve the in vivo assemblages of SCF complexes and apply quantitative mass spectrometry to perform a census of these complexes (the "SCFome") in various states. We show that Nedd8 conjugation and the SR exchange factor Cand1 have a profound effect on shaping the SCFome. Together, these factors enable rapid remodeling of SCF complexes to promote biased assembly of SR modules bound to substrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Steady-State Repertoire of Human SCF Ubiquitin Ligase Complexes Does Not Require Ongoing Nedd8 Conjugation*

The human genome encodes 69 different F-box proteins (FBPs), each of which can potentially assemble with Skp1-Cul1-RING to serve as the substrate specificity subunit of an SCF ubiquitin ligase complex. SCF activity is switched on by conjugation of the ubiquitin-like protein Nedd8 to Cul1. Cycles of Nedd8 conjugation and deconjugation acting in conjunction with the Cul1-sequestering factor Cand1...

متن کامل

Hormone signaling through protein destruction: a lesson from plants.

Ubiquitin-dependent protein degradation has emerged as a major pathway regulating eukaryotic biology. By employing a variety of ubiquitin ligases to target specific cellular proteins, the ubiquitin-proteasome system controls physiological processes in a highly regulated fashion. Recent studies on a plant hormone auxin have unveiled a novel paradigm of signal transduction in which ubiquitin liga...

متن کامل

Crashing waves of destruction: the cell cycle and APC(Cdh1) regulation of SCF(Skp2).

Coordination of events required for cell cycle progression is orchestrated in large part by the ubiquitin (Ub)-mediated destruction of key regulatory proteins such as cyclins and their inhibitors. Until now, the G1/S and mitotic phases of the cell cycle were thought to be controlled by discrete families of multisubunit Ub-ligases: SCF ligases controlled the G1 to S transition, whereas APC ligas...

متن کامل

APC/C and SCF: Controlling Each Other and the Cell Cycle

Regulated protein degradation has emerged as a key recurring theme in multiple aspects of cell-cycle regulation. Importantly, the irreversible nature of proteolysis makes it an invaluable complement to the intrinsically reversible regulation through phosphorylation and other post-translational modifications. Consequently, ubiquitin-protein ligases, the protagonists of regulated protein destruct...

متن کامل

Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family.

Cullin-based E3 ligases target substrates for ubiquitin-dependent degradation by the 26S proteasome. The SCF (Skp1-Cul1-F-box) and ECS (ElonginC-Cul2-SOCS box) complexes are so far the best-characterized cullin-based ligases. Their atomic structure has been solved recently, and several substrates have been described in different organisms. In addition to Cul1 and Cul2, higher eucaryotic genomes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 171 6  شماره 

صفحات  -

تاریخ انتشار 2017